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ANALYTIC COMPLEX STRUCTURES
ON HILBERT MANIFOLDS

DAN BURGHELEA & ANDREI DUMA

Always by a Hilbert manifold we mean a paracompact separable infinite
dimensional C~-manifold whose local model is the infinite dimensional sepa-
rable Hilbert space and by differentiable, C~-differentiable. In this note we
construct, for any such Hilbert manifold M, many nonequivalent complex
analytic structures (for the definition of complex analytic structures we refer
to [4]), namely, an infinite family of different analytic structures, all of whose
holomorphic functions are constant (Theorem 4.1), and infinitely many dif-
ferent analytic structures which have sufficient holomorphic functions, i.e., for
any two different points x, y there exists a holomorphic function with different
values at x and y (Corollary 5.2). We invite comparison of these results with
the following ones: Any two homotopy equivalent Hilbert manifolds are diffeo-
morphic, and any two homotopic diffeomorphisms are isotopic, [2], [1]. To
prove the stated results we need some differential topology of Hilbert manifolds
which will be developed in § 1, the Calabi-Eckmann equivalent in Hilbert
space (§ 2), and Hartogs’ theorem in Hilbert space (§ 3). §§ 4 and 5 deal with
the construction of the stated complex structures.

1.

Theorem 1.1 (Eells and Elworthy [5]). Any Hilbert manifold is diffeo-
morphic to an open set of the real Hilbert space H.

Since all infinite dimensional separable Hilbert spaces are isomorphic, we
will denote them by H and sometimes by H?, H®, when we indicate the field over
real R and complex Crespectively ; of course, H% and H are R (real) isomorphic.

Theorem 1.2 ([2], see also [11)s Any Hilbert manifold M is Palais stable
(stable, for short), i.e., M is diffeomorphic to M X H.

Theorem 1.3 [2]. Two homotopy equivalent Hilbert manifolds are diffeo-
morphic. ’

Proposition 1.3’ (Bessaga [2]). The unit sphere S* = {ve H|||v| = 1} is
diffeomorphic to H.

Proposition 1.4 [2]. Any Hilbert manifold can be closed and bounded dif-
ferentiably imbedded in H.
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Proposition 1.5. For any given open set U C H and any Hilbert manifold
M, there exists a closed and bounded imbedded manifold with boundary L such
that'

1) L\OL is an open set in H,

2) LCU,

3) H\L is diffeomorphic to M.

Proof. Let f: M — H be a closed imbedding which exists according to
Proposition 1.4. Choose f: B(y) — H to be a closed tubular neighborhood of
f, where B(y) denotes the total space of the fibre bundle with discs associated
with the normal bundle of f. Let T = f(B(v))(Hilbert manifold with boundary)
and P = H\Int T. Take points g, ¢IntT and g,¢ U and the closed discs
Dy C IntT, Dy C U centered at g,, g, respectively. Because H is diffeomorphic
to S (Proposition 1.3") there exists a diffeomorphism I: H — H such that
I(H\Dy) C Int Dy. The theorem follows taking L = I(P) because of Theorem 1.3
and the remark that Int B(y) has the same homotopy type as M.

Theorem 1.6. Given a Hilbert manifold M, p e H, and an open neighborhood
Uof p X REC H X R? there exists a closed imbedded manifold with boundary
(¥#,3%) C H X R? such that

1) £L\o% is an open set in H X R?,

2) 2CU,

3) H x {{}]\& diffeomorphic to M, t ¢ R®.

Proof. Choose a C~-function p: R* — R, such that for any ¢, the disc
D=(p, p(f)) centered at p with radius p(f) is contained in U N H X . Now let
us consider U = Int D=(1) in Proposition 1.5, define m: H X R* - H X R?
by m(v, t) = (p()v + p, ), and take & = m(&L X RY).

According to [8] an analytic family of complex structures on a differentiable
manifold M with parameter ¢ ¢ N (complex analytic manifold) is a complex
analytic manifold £ and a holomorphic map p: & — N such that

1) p is holomorphic locally-locally trivial,i,e., for any x € & there exist
open neighborhoods U » x and ¥ » p(x) and an analytic isomorphism #: U —
V x U’ such that the diagram

U
‘[IXV
V X U’4

is commutative,

1 A\B denotes the subset consisting of those points of A, which do not belong to B.
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2,

Consider the (complex) Hilbert space H® denoted for short by H. Let §* =
{v|l|v| = 1}, and let p: S* — P(H) be the canonical map where P(H) denotes
the projective space of the complex Hilbert space which is an analytic mani-
fold, [4]. p X p: $* X §* — P(H) x P(H) is a differentiable bundle (neglecting
the complex structure of P(H) X P(H)) whose fibre is §' X S'(S' = {2 C||2| = 1}).

Let us consider C\R = {a ¢ C|Imag & == 0}. Following Calabi-Eckmann [3]
we will define a complex family of complex analytic structures on S X S~ with
parameters in C\R such that:

For any ¢¢C\R the corresponding structure on S~ X §=, 8 X S makes
p X p an analytic fibre bundle whose fibre is ' x S}, ., = T, the complex tori
obtained as the quotient-space of the Z ® Z-free action z* on C and * defined
by =*((m, n), 2) = z + m + nz. To distinguish between the first and the second
components of H X H we will denote the first H by H, and the second by H,.
Choose the orthonormal basis ee,, ---,e,,--- in H, and ff,, - -+, f,, -+ in
H,. Consider the map I,;: H, X H,— C defined by I, ;(v, w) = (v, e, >{w, ;>
and look at the restriction I} ; of I;; to S;° X 7. Let V,;=1,5%(C\{0}), and for any
7eC\R define the homeomorphism #;,: V,; — Hi,,, X Hi;;; X T. given by

. _ (v—=<veper w—wfpf, 1 )
o) = (LSt o G lol, iogv, ey + <log v, 1]) -

(Hty,, and Hs,,,, are respectively the orthogonal complements of e, and f;.)
hg, is a C~-diffeomorphism, and A5, - (k5. ;)" is an analytic homeomorphism [3].
Moreover

.ij % C\R hii(x, 7) = (h;cj(x): t)>(HiI?ek) % Hilffj)) X T

C\R

where 7 -2 C \R is a complex family of complex tori obtained as the complex
Z @ Z-free action in C X (C\R) defined by ((n, n),z,7)) = (2 + m + nr,7);
in fact, 4 = U T,. One remarks that A, ;- (h;.,;.) ™" is holomorphic, hence A,

defines on §* x §* X C\R a complex analytic structure. One verifies easily
that S x §= x C\RZX2X% p(ry 5 P(H) % C\R is holomorphic, and

8° X 8% X C\R— P(H) X P(H) X C\R

C\R
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is a complex family of analytic fibrebundles (whose definition is obvious, see,
for instance, [8]).

Remark 2.1. The complex family, namely, the analytic structure induced
on $ X S$* for any r, is independent of the chosen basis of H. '

Remark 2.2. Suppose C, is the subspaces generated by the first n vectors
e, - -+, e, of the chosen basis. Then in the commutative diagram

§1 % Sl C\R —> §% % §x C\R

l ol

P(C™) X P(C) X C\R —> P(H) X P(H) X C\R

all maps are analytic, ¢ being an analytic imbedding. It will be convenient for
us to consider some canonical charts. Let us denote by 7%, 7", 7™, 7 the
following open sets of 7,

I = U {@&)z=2+pr,0< 3, p <1},
c€C\R

IT" = U {@&jz=2+pr,0<p<1,1/2<2<3/2}, .
TEC\R

g = L{ {ZD)]z=24+ pr, 0 <2< 1,12 < p<3/2},
TEC\R .

IV = U {&d]z=2+ p,1/2 <2, <3/2}.
*€O\R

Let us define
H2y: 18y = Wy X By X ) = By X Hhyp X T,

where (?) = 4", ™, 7, and A is a complex family of R-convex charts on
S$= % §=. Then any complex structure $* X §* of our family can be covered
by the canonical charts {1V} ,, WV, WYL, BV ), where £, j are integers,
and ©'V(; is the fibre over 7 of the family y{¥;.

Remark 2.3. The Calabi-Eckmann construction is functorial on the
category of complex Hilbert spaces and closed linear imbeddings, transform-
ing the .imbedding of Hilbert spaces in an analytic imbedding of complex

family.

Remark 2.4. If Hhasabasis e, --+, e, - - -, and C* denotes the subspace
generated by e.. - - -, e, according to 2) we have an imbedding of families,
namely:

(5771 % §*-1) X C\R —— (§= x §) X C\R
1) 72
C\R
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Moreover, the family of charts 77 = 7® N ($*! X §%-' X C/R) for
Lj< k.

Remark 2.5. For any - ¢ C\R the complex analytic manifold $* X S has
no holomorphic functions?, because we have a sequence of compact analytic
submanifolds

Sl s G-l o QL s QL L L. (o QKNS ¢ @Akl oL

whose union is everywhere dense in §* X S7.

Remark 2.6. If & denotes a diffeomorphism of $* x S* — H which exists
because of Proposition 1.3, then & X id: §* X §° X C\R — H X C\R will
be a diffeomorphism commuting with the projection on the component C\R,
and one can consider this family of complex structures on S~ X S as a family
of complex stuctures on H.

Remark 2.7. S= x S7 is isomorphic to §* X Sg iff = and ¢’ are related by
the following equation:

a,” + a
(1) r= ST
: ayt’ + ay

where a;; are integers and det |a;;| = +1. To prove this, notice that z and ¢’
related by (1) imply that the identity map is holomorphic with respect to the
analytic structures z and ¢’ (as one can easily see

(i,[log {x, 6> + tlog (x, f, 51 — L.[IOg (v, e,y + ' log (v, fj>])
2mi 2xi

is an analytic isomorphism of torus T, ., — T,,.,, as soon as (1) is satisfied)..
Conversely, one uses the same argument as in the proof of Theorem 4.1
below.

3.

Hartogs’ theorem. Let {2 be a bounded open set in H®, and K a closed
bounded set in H® such that K C 2 and Q\K is connected. For every holo-
morphic function u on 2\K one can find a holomorphic function U on Q so
that U = u in Q\K.

This theorem is the well-known Hartogs theorem in thecase H=C",n > 2.
The proof is exactly the same as in the finite dimensional case, namely, as the
proof of [7, p. 30], but we still give it here for the convenience of the reader.

First, choose a C~-function ¢: £ — R, such that Supep C 2 and ¢ =1
on a neighborhood ¥ of K. This is always possible because of the partition of
the unity.

? The index ¢ for §= X S~ refers to S~ X S~ and not to the second S=.
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Now let us consider the function i, = (1 — @)u e C* defined on all £. Then
u,is O on V. To seek U of the form U = u, — v, v has to satisfy the following
differential equation 5(v) = ou, = —udp =f. (We can consider H® =
HE®zC =~ H® ® HZ, so0 ze HC corresponds to x + y,xe HF,y ¢ H®, Then

f(2) = f(x,5) and 3f(z) = L dfu(@) + - df,(2), 3i(2) & Homy, (HF © HF, C)

= Hom (H¢, C).) Notice that function feC* can be extended on H with zero
outside £; f = 0 on'V (f has bounded support because £ is bounded).

Given a base e}, e,, - -- in H and « ¢ Homp (H, C), the 1-component of «
will be « restricted to {Ce,}, and z = z, @ zi, z, € {Ce,}, zi € HS. Now define

W@ =5 [[c—wtew, dna,
C=R®R
where f, is the 1-component of f. Notice v is continuous in 2 because for any
point we H, w = w,®wi e Ce, ® H} = H, there exists a neighborhood D(w;, ¢)
X D(wi,n) C Ce, @ H; = H, where D(w,,¢) and D(wi, ) are discs in Ce,
and HY, centered at w, € C{e,} and wi e Hj; with radii ¢ and y, respectively, such
that v is continuous on this neighborhood which can be found in the following

way':
(1) IKweV, take (¢, 7) such that D(w,,¢) X D(wt,y) C V. Then for any
Z € D(Wl, 6) X D(w1 ’ 77), ’ .

v@:%Jf&—m%mwMAﬁ

5<w1,=)

f f (r — z)~Yi(z, 2)de A de

C\D(wy,e)

- 1 . -1 an
=5 ff (z — z)7Yile, zb)dr A dr

\B@wi, s

27':1
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since f restricts on ¥V to zero. The last term becomes equal to
% ff (z — 2D (7, z1)dr N dz, where D(0, N) denotes the disc in C

i

4 D, M\D (wy,e)

centered O with radius N since f has bounded support. The last integral
is obviously continuous on D(w,, &) X D(wi,5), because g(z,2,24) =
(;Z)_lfl(r, zi) restricts on (D(0, N)\D(w,; &) X D(w,, &) X D(wi-, ) toa
T — %
continuous function, ane D(0, N)\D"(w,; ¢) is compact.

(2) Ifwef\V, itis easy to verify that v(w) is well defined and equal to
u(w) — v(w) by applying, for instance, Theorem 121 of [7]. Hence v is locally
continuous on 2\V.

4.

Theorem 4.1. Given a Hilbert manifold M, there exists a complex family
of complex analytic structures M,, r ¢ C\R, such that:

1) M., has no nonconstant holomorphic functions,

2) if M, and M_, are analytic isomorphic, then ¢ = air:-"—a” with integers

ant + ay

a;; and det]a; | = 1.

Proof. Consider the complex family of complex (Calabi-Eckmann)-
structures defined in § 2. Take the complex family of charts rk ;e

As we have seen, the diagram

= (§= X §=) X {C\R} -2, [C\R}
U D2 ‘ DeD2

W, .
1 1 1 1
Trs — Higoy X Hyppy X T

is commutative and the fibre of p, in ¢ is a convex chart of the complex struc-
ture $* X S7. Consider the unit discs (D,(H%) and D (Hf,) in HF, ane Hy,
respectively. Applying Theorem 1.6 we can construct a closed mamfold with
boundary % such that & C h;(D(HE) X D (H 1) X ") and p;H()\Z is

diffeomorphic to M because $* X S* x {C\R} LN {C\R} is the trivial differ-
ential fibre bundle with fibre diffeomorphic to S$= x S°° = HZE (according to

Proposition 1.3’). The map (S~ x §= X {C\RP\¥ — {C\R} is surjective;
moreover, it is a complex family of complex analytic structures (§* X Sr\.%),
and, by Hartogs’ theorem, $* X S*\.# has no nonconstant holomorphic func-
tions. (If f is a holomorphic function on §* X §7°\.%, consider the restriction
of f to V,;\&, and by applying Hartogs’ theorem we get an extension of f to
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V., and hence an extension of f on §* X §7 which, according to Remark 3.2,
must be constant.

Now let us consider M, and M,., both of which are open manifolds of the
complex manifolds = x $=, complex fibre bundles over P(H) x P(H). This is
represented by the following diagram:

S= x 8= Y, p(H) x P(H) £ 8= x §=

I T

M M.,

T

Suppose there exists an analytic isomorphism /: M, — M_.. By construction we
can find a point x ¢ P(H) X P(H) such that p~'(x) C M,.. Looking at the dia-
gram

5% % S:S 2, Py x P@H)

M, p7i(x)
! I
M; S'x St=T,

we notice that if p.l(T,) is just one point denoted by y, then ! maps T, in T,
= p» holomorphically and injectively, and it follows I: T, — T, is an analytic
isomorphism since T, and T, are 1-(complex)-dimensional analytic manifolds.
Thus 7 = a_“f:_i.‘.zli with integers a;, and det|a;;| = +1.

ayt + as;

It remains to prove p-.I(T,) = one point. Notice that (p-),: H(T,) —
HJ(PH x PH), where H,( ) denotes the second group of homology with integral
coefficients, is the zero homomorphism, since p-/ factorizes by = X = (con-
tractible).

Since p-U(T,) is a compact set, if we denote by {U,} the canonical charts on
P(H) with respect to a given basis e, e, - -,i.e., if U, = P(H)\P(HZ), then
there exists N such that p.I(T,) € U {U, X U,}; but as one can easily see

1, J<N
UN{Ui X U;} = Ey X E, where Ey is the total space of an analytic fibre
i,is
bundle over P(C¥~") with fibre H{, ... ., to be orthogonal complement of the
space generated by e,- - -ey. Hence p-I can be factorized by Ey X Ey as is
indicated by the following diagram: ‘
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P(H) X P(H)
2! U o
T, 25 Ey X Ey -2 P(C¥Y) X P(CH-Y)

Since Ey X Ex C P(H) X P(H) induces an isomorphism for;homology up to
dimension (N — 1),p’-(p-0) is an analytic map such that (p’-'(p~l))*: H(T)
— Hy(P(C¥~") X P(C¥"") is zero, and hence (p;,-p’-(p-D),: H(T,) —
H,(P(C¥-Y) is zero where p;, i = 1, 2, are the projections of P(C¥-!) x P(C¥-Y)
onto its factors.

Because of the “intersection theory”, p,p’pl(T,) is a discrete set; otherwise
pp'(p-D (H(T)) + 0. Thus p’(p-I)(T,) is a discrete set and is just one point
ye P(CY-Y) X P(C¥~") because of the connectivity of 7',. It therefore follows
that p-I(T) lies in the fibre of p’ over y. Since T, is compact, all holomorphic
functions are constant, and hence p-i(T,) is a point.

Corollary 4.2. There exist infinitely many complex analytic structures on
any Hilbert manifold, which have no nonconstant holomorphic functions.

‘Remark 4.3. M, x HC analytically isomorphic to M, X H¢ implies M,
analytically isomorphic to M._..

Proof. Suppose I: M, X H— M_ X H is an analytic isomorphism, and p,

is the projection of M, X H — H. Since M, has no holomorphic functions,

-l . .
M, X H P2 H is factorized by p,, and therefore p,-1 = r.p,. Hence we get
the commutative diagram

1
M.x H—s M. x H

b b

H - H
which implies that M, is analytically isomorphic to M...

5.

Proposition 5.1. Let (M,0M) be a closed differentiable manifold in H°
such that M\oM is an open set in H® (0M is a closed differentiable sub-

manifold of HC), and let p,, ---,p, be different points in M\oM. Then
M\{oM U p,U --- U p,_\} is analytically nonequivalent to M\{8M U p, U
oo U pn},

Proof. Suppose there exists an analytic isomorphism I: M\{oM ( p, U
- Upt—-M\{PMUp, U --- U p,_,} C H. Then applying Hartogs’ theorem
we can extend [ to /M — H. We first notice that either I(p,) becomes p ;01
I(p,) € 8M since [ is continuous, and then show the latter case not to be possible.
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Suppose g = I(p,) e oM. Let us take the normal vector ¥ at g (outside the
manifold) and consider 7 such that |¢%| N M = g, where [¢7| denotes all points
tv,te R,, 0 <t <s. Consider the origin g of the complex Hilbert space and
the complex line {¥} generated by v. There exists at least one complex line {¢}
passing through p; such that s = pr,-7|{t} is a nonconstant holomorphic func-
tion. Consider a small open disc D in {v} and s~(D) C {#}. Since s is nonconstant
and holomorphic, it has to be open, i.e., s(s~!(D)) has to be an open set. But as
we can see, s(s”(D)) is not open. The origin g of {9} belongs to s(s~}(D)), but
neighborhoods of ¢ contained in s(s~(D)) do not exist. Thus I(p) ¢6M, and
hence I(p,) = p;, so that there exist at least two points p, and p;, such that
I,) = I(p;)). Choose again a complex line {f} passing through p,. Since 7 is
nonconstant for any points p, and p;,, we can get a line {#,} and {z,} such that
its projection on {t} composed by / is holomorphic and nonconstant and is
therefore open. This implies that there exist x, ¢ {#,} N (M\oMUp,U ---Up,_)
and x, e {t} N (M\éM U p,U - - - Up,_,) such that I(x,) = I(x,) = I(x,) = I(x,).
But this is impossible because [ is injective.

Corollary 5.2. For any given Hilbert manifold M, there exist infinitely
many different complex analytic structures with many holomorphic functions
(i.e., given two points x,y € M, there exists a holomorphic function f such that
) # ).

Moreover, we can construct infinitely many different structures with many
holomorphic functions, which have nonconstant bounded holomorphic func-
tions, and infinitely many different analytic structures which have no non-
constant bounded holomorphic functions.

Proof. (a) Start with M and imbed M closely in H. Take a closed tubu-
lar neighborhood of M, denote it by T, and notice that (T, 9T) C H€ is a closed
differentiable submanifold and that T\oT = T is open set homotopy equivalent
to M and therefore is diffeomorphic to M according to Theorem 1.3. If H is
the complex Hilbert space T, then T\Pl, f"\{p1 U b} f‘\{pl, Dy D3}, + -+ are
complex analytic manifolds with the induced structure which has sufficient
holomorphic functions, all of which are diffeomorphic to M by Theorem 1.3
and analytically nonequivalent by Proposition 5.1.
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(b) 1If we apply Proposition 1.5 to U = Int D=(1), we will get an ¥ and
((H\Int L), @(H\Int L)) is a closed differentiable manifold with M = H\L.
With the induced complex structure, the manifolds M, M\{p}, ---, M\{p,
«++,pg}, + - - are different complex manifolds according to Proposition 5.1,
but all are diffeomorphic. Moreover, any holomorphic function f: M\{p,, - - - ,p,}
can be extended to H because of Hartogs’ theorem, and if f is nonconstant,
then it cannot be bounded. In fact, if f is bounded, Hartogs’ extension is also
bounded and then is constant according to Liouville’s theorem.

We can construct M as an open and bounded set in H, whose boundary is
a differentiable manifold by Proposition 1.4, and then we get a structure which
has of course, sufficiently many, bounded nonconstant holomorphic functions.
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